A company stores time-series data about user clicks in an Amazon S3 bucket. The raw data consists of millions of rows of user activity every day. ML engineers access the data to develop their ML models.
The ML engineers need to generate daily reports and analyze click trends over the past 3 days by using Amazon Athena. The company must retain the data for 30 days before archiving the data.
Which solution will provide the HIGHEST performance for data retrieval?
A company is developing an internal cost-estimation tool that uses an ML model in Amazon SageMaker AI. Users upload high-resolution images to the tool.
The model must process each image and predict the cost of the object in the image. The model also must notify the user when processing is complete.
Which solution will meet these requirements?
A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.
The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.
Which algorithm should the ML engineer implement to meet these requirements?
A company has a team of data scientists who use Amazon SageMaker notebook instances to test ML models. When the data scientists need new permissions, the company attaches the permissions to each individual role that was created during the creation of the SageMaker notebook instance.
The company needs to centralize management of the team's permissions.
Which solution will meet this requirement?
A company is exploring generative AI and wants to add a new product feature. An ML engineer is making API calls from existing Amazon EC2 instances to Amazon Bedrock.
The EC2 instances are in a private subnet and must remain private during the implementation. The EC2 instances have a security group that allows access to all IP addresses in the private subnet.
What should the ML engineer do to establish a connection between the EC2 instances and Amazon Bedrock?
An ML engineer is evaluating several ML models and must choose one model to use in production. The cost of false negative predictions by the models is much higher than the cost of false positive predictions.
Which metric finding should the ML engineer prioritize the MOST when choosing the model?
A company must install a custom script on any newly created Amazon SageMaker AI notebook instances.
Which solution will meet this requirement with the LEAST operational overhead?
A company is running ML models on premises by using custom Python scripts and proprietary datasets. The company is using PyTorch. The model building requires unique domain knowledge. The company needs to move the models to AWS.
Which solution will meet these requirements with the LEAST effort?
A company has developed a new ML model. The company requires online model validation on 10% of the traffic before the company fully releases the model in production. The company uses an Amazon SageMaker endpoint behind an Application Load Balancer (ALB) to serve the model.
Which solution will set up the required online validation with the LEAST operational overhead?
A company wants to develop an ML model by using tabular data from its customers. The data contains meaningful ordered features with sensitive information that should not be discarded. An ML engineer must ensure that the sensitive data is masked before another team starts to build the model.
Which solution will meet these requirements?