A company is developing an ML model to forecast future values based on time series data. The dataset includes historical measurements collected at regular intervals and categorical features. The model needs to predict future values based on past patterns and trends.
Which algorithm and hyperparameters should the company use to develop the model?
An ML engineer wants to run a training job on Amazon SageMaker AI. The training job will train a neural network by using multiple GPUs. The training dataset is stored in Parquet format.
The ML engineer discovered that the Parquet dataset contains files too large to fit into the memory of the SageMaker AI training instances.
Which solution will fix the memory problem?
A company is using an Amazon Redshift database as its single data source. Some of the data is sensitive.
A data scientist needs to use some of the sensitive data from the database. An ML engineer must give the data scientist access to the data without transforming the source data and without storing anonymized data in the database.
Which solution will meet these requirements with the LEAST implementation effort?
An ML engineer needs to deploy ML models to get inferences from large datasets in an asynchronous manner. The ML engineer also needs to implement scheduled monitoring of the data quality of the models. The ML engineer must receive alerts when changes in data quality occur.
Which solution will meet these requirements?
An ML engineer at a credit card company built and deployed an ML model by using Amazon SageMaker AI. The model was trained on transaction data that contained very few fraudulent transactions. After deployment, the model is underperforming.
What should the ML engineer do to improve the model’s performance?
A company is building a near real-time data analytics application to detect anomalies and failures for industrial equipment. The company has thousands of IoT sensors that send data every 60 seconds. When new versions of the application are released, the company wants to ensure that application code bugs do not prevent the application from running.
Which solution will meet these requirements?
An ML engineer has an Amazon Comprehend custom model in Account A in the us-east-1 Region. The ML engineer needs to copy the model to Account В in the same Region.
Which solution will meet this requirement with the LEAST development effort?
A company uses Amazon Athena to query a dataset in Amazon S3. The dataset has a target variable that the company wants to predict.
The company needs to use the dataset in a solution to determine if a model can predict the target variable.
Which solution will provide this information with the LEAST development effort?
An ML engineer needs to organize a large set of text documents into topics. The ML engineer will not know what the topics are in advance. The ML engineer wants to use built-in algorithms or pre-trained models available through Amazon SageMaker AI to process the documents.
Which solution will meet these requirements?
An ML engineer wants to re-train an XGBoost model at the end of each month. A data team prepares the training data. The training dataset is a few hundred megabytes in size. When the data is ready, the data team stores the data as a new file in an Amazon S3 bucket.
The ML engineer needs a solution to automate this pipeline. The solution must register the new model version in Amazon SageMaker Model Registry within 24 hours.
Which solution will meet these requirements?