A company uses Amazon Redshift as its data warehouse. Data encoding is applied to the existing tables of the data warehouse. A data engineer discovers that the compression encoding applied to some of the tables is not the best fit for the data.
The data engineer needs to improve the data encoding for the tables that have sub-optimal encoding.
Which solution will meet this requirement?
A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.
The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.
Which solution will meet this requirement with the LEAST effort?
An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.
The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.
As the amount of data increases, the company wants to optimize the storage solution to improve query performance.
Which combination of solutions will meet these requirements? (Choose two.)
A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.
An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.
If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.
Which solution will meet these requirements?
A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.
The company wants to minimize the effort and time required to incorporate third-party datasets.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.
Which solution will meet this requirement?
A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.
The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.
Which command should the developer for Branch B run before the developer raises a pull request to the master branch?
A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.
Which AWS service or feature will meet these requirements MOST cost-effectively?
A company has a data processing pipeline that runs multiple SQL queries in sequence against an Amazon Redshift cluster. After a merger, a query joining two large sales tables becomes slow. Table S1 has 10 billion records, Table S2 has 900 million records.
The query performance must improve.