A sales company uses AWS Glue ETL to collect, process, and ingest data into an Amazon S3 bucket. The AWS Glue pipeline creates a new file in the S3 bucket every hour. File sizes vary from 200 KB to 300 KB. The company wants to build a sales prediction model by using data from the previous 5 years. The historic data includes 44,000 files.
The company builds a second AWS Glue ETL pipeline by using the smallest worker type. The second pipeline retrieves the historic files from the S3 bucket and processes the files for downstream analysis. The company notices significant performance issues with the second ETL pipeline.
The company needs to improve the performance of the second pipeline.
Which solution will meet this requirement MOST cost-effectively?
A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.
Which solution will run the Glue jobs in the MOST cost-effective way?
A data engineer uses Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to run data pipelines in an AWS account. A workflow recently failed to run. The data engineer needs to use Apache Airflow logs to diagnose the failure of the workflow. Which log type should the data engineer use to diagnose the cause of the failure?
A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.
The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.
Which solutions will meet these requirements? (Select TWO.)
A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.
The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.
Which solution will meet these requirements MOST cost-effectively?
A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.
Which solution will give the company the ability to use Spark to access Athena?
A data engineer is configuring an AWS Glue Apache Spark extract, transform, and load (ETL) job. The job contains a sort-merge join of two large and equally sized DataFrames.
The job is failing with the following error: No space left on device.
Which solution will resolve the error?
A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.
The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.
Which solution will meet these requirements with the LOWEST latency?
An ecommerce company stores sales data in an AWS Glue table named sales_data. The company stores the sales_data table in an Amazon S3 Standard bucket. The table contains columns named order_id, customer_id, product_id, order_date, shipping_date, and order_amount.
The company wants to improve query performance by partitioning the sales_data table by order_date. The company needs to add the partition to the existing sales_data table in AWS Glue.
Which solution will meet these requirements?
A data engineer is designing a new data lake architecture for a company. The data engineer plans to use Apache Iceberg tables and AWS Glue Data Catalog to achieve fast query performance and enhanced metadata handling. The data engineer needs to query historical data for trend analysis and optimize storage costs for a large volume of event data.
Which solution will meet these requirements with the LEAST development effort?