This solution will meet the requirements with the lowest latency because it uses Amazon Managed Service for Apache Flink to process the sensor data in real time and write it to Amazon Timestream, a fast, scalable, and serverless time series database. Amazon Timestream is optimized for storing and analyzing time series data, such as sensor data, and can handle trillions of events per day with millisecond latency. By using Amazon Timestream as a source, you can create an Amazon QuickSight dashboard that displays a real-time view of operational efficiency on a large screen in the manufacturing facility. Amazon QuickSight is a fully managed business intelligence service that can connect to various data sources, including Amazon Timestream, and provide interactive visualizations and insights123.
The other options are not optimal for the following reasons:
A. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard. This option is similar to option C, but it uses Grafana instead of Amazon QuickSight to create the dashboard. Grafana is an open source visualization tool that can also connect to Amazon Timestream, but it requires additional steps to set up and configure, such as deploying a Grafana server on Amazon EC2, installing the Amazon Timestream plugin, and creating an IAM role for Grafana to access Timestream. These steps can increase the latency and complexity of the solution.
B. Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard. This option is not suitable for displaying a real-time view of operational efficiency, as it introduces unnecessary delays and costs in the data pipeline. First, the sensor data is written to an S3 bucket by Amazon Kinesis Data Firehose, which can have a buffering interval of up to 900 seconds. Then, the S3 bucket sends a notification to a Lambda function, which can incur additional invocation and execution time. Finally, the Lambda function publishes the data to Amazon Aurora, a relational database that is not optimized for time series data and can have higher storage and performance costs than Amazon Timestream .
D. Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard. This option is also not suitable for displaying a real-time view of operational efficiency, as it uses AWS Glue bookmarks to read sensor data from the S3 bucket. AWS Glue bookmarks are a feature that helps AWS Glue jobs and crawlers keep track of the data that has already been processed, so that they can resume from where they left off. However, AWS Glue jobs and crawlers are not designed for real-time data processing, as they can have a minimum frequency of 5 minutes and a variable start-up time. Moreover, this option also uses Grafana instead of Amazon QuickSight to create the dashboard, which can increase the latency and complexity of the solution .
1: Amazon Managed Streaming for Apache Flink
2: Amazon Timestream
3: Amazon QuickSight
Analyze data in Amazon Timestream using Grafana
Amazon Kinesis Data Firehose
Amazon Aurora
AWS Glue Bookmarks
AWS Glue Job and Crawler Scheduling
Submit