You have a functioning end-to-end ML pipeline that involves tuning the hyperparameters of your ML model using Al Platform, and then using the best-tuned parameters for training. Hypertuning is taking longer than expected and is delaying the downstream processes. You want to speed up the tuning job without significantly compromising its effectiveness. Which actions should you take?
Choose 2 answers
You work for a pharmaceutical company based in Canada. Your team developed a BigQuery ML model to predict the number of flu infections for the next month in Canada Weather data is published weekly and flu infection statistics are published monthly. You need to configure a model retraining policy that minimizes cost What should you do?
You work for a retail company that is using a regression model built with BigQuery ML to predict product sales. This model is being used to serve online predictions Recently you developed a new version of the model that uses a different architecture (custom model) Initial analysis revealed that both models are performing as expected You want to deploy the new version of the model to production and monitor the performance over the next two months You need to minimize the impact to the existing and future model users How should you deploy the model?
You work for a retailer that sells clothes to customers around the world. You have been tasked with ensuring that ML models are built in a secure manner. Specifically, you need to protect sensitive customer data that might be used in the models. You have identified four fields containing sensitive data that are being used by your data science team: AGE, IS_EXISTING_CUSTOMER, LATITUDE_LONGITUDE, and SHIRT_SIZE. What should you do with the data before it is made available to the data science team for training purposes?
You are investigating the root cause of a misclassification error made by one of your models. You used Vertex Al Pipelines to tram and deploy the model. The pipeline reads data from BigQuery. creates a copy of the data in Cloud Storage in TFRecord format trains the model in Vertex Al Training on that copy, and deploys the model to a Vertex Al endpoint. You have identified the specific version of that model that misclassified: and you need to recover the data this model was trained on. How should you find that copy of the data'?
You work for a company that provides an anti-spam service that flags and hides spam posts on social media platforms. Your company currently uses a list of 200,000 keywords to identify suspected spam posts. If a post contains more than a few of these keywords, the post is identified as spam. You want to start using machine learning to flag spam posts for human review. What is the main advantage of implementing machine learning for this business case?
You are the lead ML engineer on a mission-critical project that involves analyzing massive datasets using Apache Spark. You need to establish a robust environment that allows your team to rapidly prototype Spark models using Jupyter notebooks. What is the fastest way to achieve this?
You work as an ML engineer at a social media company, and you are developing a visual filter for users’ profile photos. This requires you to train an ML model to detect bounding boxes around human faces. You want to use this filter in your company’s iOS-based mobile phone application. You want to minimize code development and want the model to be optimized for inference on mobile phones. What should you do?
You work for a bank and are building a random forest model for fraud detection. You have a dataset that
includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?
You are training a TensorFlow model on a structured data set with 100 billion records stored in several CSV files. You need to improve the input/output execution performance. What should you do?