Pass the Amazon Web Services AWS Certified Specialty MLS-C01 Questions and answers with CertsForce

Viewing page 8 out of 10 pages
Viewing questions 71-80 out of questions
Questions # 71:

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:

...traction Timestamp (Timeslamp)

...JName(Varchar)

...JNo (Varchar)

Th data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a isactionTime column Finally, the CardName column must be renamed to NameOnCard.

The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution must be automated and must minimize the load on the Amazon Redshift cluster

Which solution meets these requirements?

Options:

A.

Set up an Amazon EMR cluster Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.


B.

Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J. to query the data from the Amazon Redshift cluster directly. Export the resulting dataset into a We. Upload the file into the S3 bucket. Perform these tasks monthly.


C.

Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination Use the built-in transforms Filter, Map. and RenameField to perform the required transformations. Schedule the job to run monthly.


D.

Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly


Expert Solution
Questions # 72:

A company deployed a machine learning (ML) model on the company website to predict real estate prices. Several months after deployment, an ML engineer notices that the accuracy of the model has gradually decreased.

The ML engineer needs to improve the accuracy of the model. The engineer also needs to receive notifications for any future performance issues.

Which solution will meet these requirements?

Options:

A.

Perform incremental training to update the model. Activate Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.


B.

Use Amazon SageMaker Model Governance. Configure Model Governance to automatically adjust model hyper para meters. Create a performance threshold alarm in Amazon CloudWatch to send notifications.


C.

Use Amazon SageMaker Debugger with appropriate thresholds. Configure Debugger to send Amazon CloudWatch alarms to alert the team Retrain the model by using only data from the previous several months.


D.

Use only data from the previous several months to perform incremental training to update the model. Use Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.


Expert Solution
Questions # 73:

A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.


B.

Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.


C.

Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a model Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.


D.

Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.


Expert Solution
Questions # 74:

A Machine Learning Specialist is attempting to build a linear regression model.

Given the displayed residual plot only, what is the MOST likely problem with the model?

Options:

A.

Linear regression is inappropriate. The residuals do not have constant variance.


B.

Linear regression is inappropriate. The underlying data has outliers.


C.

Linear regression is appropriate. The residuals have a zero mean.


D.

Linear regression is appropriate. The residuals have constant variance.


Expert Solution
Questions # 75:

A Machine Learning Specialist built an image classification deep learning model. However the Specialist ran into an overfitting problem in which the training and testing accuracies were 99% and 75%r respectively.

How should the Specialist address this issue and what is the reason behind it?

Options:

A.

The learning rate should be increased because the optimization process was trapped at a local minimum.


B.

The dropout rate at the flatten layer should be increased because the model is not generalized enough.


C.

The dimensionality of dense layer next to the flatten layer should be increased because the model is not complex enough.


D.

The epoch number should be increased because the optimization process was terminated before it reached the global minimum.


Expert Solution
Questions # 76:

An ecommerce company has used Amazon SageMaker to deploy a factorization machines (FM) model to suggest products for customers. The company's data science team has developed two new models by using the TensorFlow and PyTorch deep learning frameworks. The company needs to use A/B testing to evaluate the new models against the deployed model.

...required A/B testing setup is as follows:

• Send 70% of traffic to the FM model, 15% of traffic to the TensorFlow model, and 15% of traffic to the Py Torch model.

• For customers who are from Europe, send all traffic to the TensorFlow model

..sh architecture can the company use to implement the required A/B testing setup?

Options:

A.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create an Application Load Balancer Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.


B.

Create two production variants for the TensorFlow and PyTorch models. Create an auto scaling policy and configure the desired A/B weights to direct traffic to each production variant Update the existing SageMaker endpoint with the auto scaling policy. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.


C.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create a Network Load Balancer. Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.


D.

Create two production variants for the TensorFlow and PyTorch models. Specify the weight for each production variant in the SageMaker endpoint configuration. Update the existing SageMaker endpoint with the new configuration. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.


Expert Solution
Questions # 77:

A company is building a new version of a recommendation engine. Machine learning (ML) specialists need to keep adding new data from users to improve personalized recommendations. The ML specialists gather data from the users’ interactions on the platform and from sources such as external websites and social media.

The pipeline cleans, transforms, enriches, and compresses terabytes of data daily, and this data is stored in Amazon S3. A set of Python scripts was coded to do the job and is stored in a large Amazon EC2 instance. The whole process takes more than 20 hours to finish, with each script taking at least an hour. The company wants to move the scripts out of Amazon EC2 into a more managed solution that will eliminate the need to maintain servers.

Which approach will address all of these requirements with the LEAST development effort?

Options:

A.

Load the data into an Amazon Redshift cluster. Execute the pipeline by using SQL. Store the results in Amazon S3.


B.

Load the data into Amazon DynamoDB. Convert the scripts to an AWS Lambda function. Execute the pipeline by triggering Lambda executions. Store the results in Amazon S3.


C.

Create an AWS Glue job. Convert the scripts to PySpark. Execute the pipeline. Store the results in Amazon S3.


D.

Create a set of individual AWS Lambda functions to execute each of the scripts. Build a step function by using the AWS Step Functions Data Science SDK. Store the results in Amazon S3.


Expert Solution
Questions # 78:

A credit card company wants to identify fraudulent transactions in real time. A data scientist builds a machine learning model for this purpose. The transactional data is captured and stored in Amazon S3. The historic data is already labeled with two classes: fraud (positive) and fair transactions (negative). The data scientist removes all the missing data and builds a classifier by using the XGBoost algorithm in Amazon SageMaker. The model produces the following results:

• True positive rate (TPR): 0.700

• False negative rate (FNR): 0.300

• True negative rate (TNR): 0.977

• False positive rate (FPR): 0.023

• Overall accuracy: 0.949

Which solution should the data scientist use to improve the performance of the model?

Options:

A.

Apply the Synthetic Minority Oversampling Technique (SMOTE) on the minority class in the training dataset. Retrain the model with the updated training data.


B.

Apply the Synthetic Minority Oversampling Technique (SMOTE) on the majority class in the training dataset. Retrain the model with the updated training data.


C.

Undersample the minority class.


D.

Oversample the majority class.


Expert Solution
Questions # 79:

A law firm handles thousands of contracts every day. Every contract must be signed. Currently, a lawyer manually checks all contracts for signatures.

The law firm is developing a machine learning (ML) solution to automate signature detection for each contract. The ML solution must also provide a confidence score for each contract page.

Which Amazon Textract API action can the law firm use to generate a confidence score for each page of each contract?

Options:

A.

Use the AnalyzeDocument API action. Set the FeatureTypes parameter to SIGNATURES. Return the confidence scores for each page.


B.

Use the Prediction API call on the documents. Return the signatures and confidence scores for each page.


C.

Use the StartDocumentAnalysis API action to detect the signatures. Return the confidence scores for each page.


D.

Use the GetDocumentAnalysis API action to detect the signatures. Return the confidence scores for each page


Expert Solution
Questions # 80:

A sports analytics company is providing services at a marathon. Each runner in the marathon will have their race ID printed as text on the front of their shirt. The company needs to extract race IDs from images of the runners.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Rekognition.


B.

Use a custom convolutional neural network (CNN).


C.

Use the Amazon SageMaker Object Detection algorithm.


D.

Use Amazon Lookout for Vision.


Expert Solution
Viewing page 8 out of 10 pages
Viewing questions 71-80 out of questions