A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.
The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint
Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)
A Machine Learning Specialist trained a regression model, but the first iteration needs optimizing. The Specialist needs to understand whether the model is more frequently overestimating or underestimating the target.
What option can the Specialist use to determine whether it is overestimating or underestimating the target value?
A company builds computer-vision models that use deep learning for the autonomous vehicle industry. A machine learning (ML) specialist uses an Amazon EC2 instance that has a CPU: GPU ratio of 12:1 to train the models.
The ML specialist examines the instance metric logs and notices that the GPU is idle half of the time The ML specialist must reduce training costs without increasing the duration of the training jobs.
Which solution will meet these requirements?
A Machine Learning Specialist is applying a linear least squares regression model to a dataset with 1 000 records and 50 features Prior to training, the ML Specialist notices that two features are perfectly linearly dependent
Why could this be an issue for the linear least squares regression model?
A manufacturing company asks its Machine Learning Specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100000 images per defect type for training During the injial training of the image classification model the Specialist notices that the validation accuracy is 80%, while the training accuracy is 90% It is known that human-level performance for this type of image classification is around 90%
What should the Specialist consider to fix this issue1?
A Machine Learning Specialist is developing recommendation engine for a photography blog Given a picture, the recommendation engine should show a picture that captures similar objects The Specialist would like to create a numerical representation feature to perform nearest-neighbor searches
What actions would allow the Specialist to get relevant numerical representations?
An engraving company wants to automate its quality control process for plaques. The company performs the process before mailing each customized plaque to a customer. The company has created an Amazon S3 bucket that contains images of defects that should cause a plaque to be rejected. Low-confidence predictions must be sent to an internal team of reviewers who are using Amazon Augmented Al (Amazon A2I).
Which solution will meet these requirements?
A data scientist obtains a tabular dataset that contains 150 correlated features with different ranges to build a regression model. The data scientist needs to achieve more efficient model training by implementing a solution that minimizes impact on the model's performance. The data scientist decides to perform a principal component analysis (PCA) preprocessing step to reduce the number of features to a smaller set of independent features before the data scientist uses the new features in the regression model.
Which preprocessing step will meet these requirements?
A finance company has collected stock return data for 5.000 publicly traded companies. A financial analyst has a dataset that contains 2.000 attributes for each company. The financial analyst wants to use Amazon SageMaker to identify the top 15 attributes that are most valuable to predict future stock returns.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.
Which solution should a machine learning specialist implement to meet these requirements?