When implementing Einstein Generative AI for improved customer insights and interactions, the Data Cloud is a key consideration for storing and managing large-scale audit and feedback data. The Salesforce Data Cloud (formerly known as Customer 360 Audiences) is designed to handle and unify massive datasets from various sources, making it ideal for storing data required for AI-powered insights and reporting. By provisioning Data Cloud, organizations like Universal Containers (UC) can gain real-time access to customer data, making it a central repository for unified reporting across various systems.
Audit and feedback data generated by Einstein Generative AI needs to be stored in a scalable and accessible environment, and the Data Cloud provides this capability, ensuring that data can be easily accessed for reporting, analytics, and further model improvement.
Custom objects or Salesforce Big Objects are not designed for the scale or the specific type of real-time, unified data processing required in such AI-driven interactions. Big Objects are more suited for archival data, whereas Data Cloud ensures more robust processing, segmentation, and analysis capabilities.
References:
Salesforce Data Cloud Documentation: https://www.salesforce.com/products/data-cloud/overview/
Salesforce Einstein AI Overview: https://www.salesforce.com/products/einstein/overview/
Contribute your Thoughts:
Chosen Answer:
This is a voting comment (?). You can switch to a simple comment. It is better to Upvote an existing comment if you don't have anything to add.
Submit