Ongoing, remote maintenance is one of the most effective ways to improve the security posture of embedded systems over time because it enables timely remediation of newly discovered weaknesses. Embedded devices frequently run firmware that includes operating logic, network stacks, and third-party libraries. As vulnerabilities are discovered in these components, organizations must be able to deploy fixes quickly to reduce exposure. Remote maintenance supports this by enabling over-the-air firmware and software updates, configuration changes, certificate and key rotation, and the rollout of compensating controls such as updated security policies or hardened settings.
Option B is correct because remote maintenance directly addresses the challenge ofdeploying updated firmwareas issues are identified. Cybersecurity guidance for embedded and IoT environments emphasizes secure update mechanisms: authenticated update packages, integrity verification (such as digital signatures), secure distribution channels, rollback protection, staged deployment, and audit logging of update actions. These practices reduce the risk of attackers installing malicious firmware and help ensure devices remain supported throughout their operational life.
The other options are not primarily solved by remote maintenance. Limited CPU and memory are inherent design constraints that may require hardware redesign. Battery and component limitations are also physical constraints. Physical security attacks exploit device access and hardware weaknesses, which require tamper resistance, secure boot, and physical protections rather than remote maintenance alone.
Submit