Databricks Certified Associate Developer for Apache Spark 3.5 – Python Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question # 19 Topic 2 Discussion

Databricks Certified Associate Developer for Apache Spark 3.5 – Python Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question # 19 Topic 2 Discussion

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Exam Topic 2 Question 19 Discussion:
Question #: 19
Topic #: 2

A developer wants to refactor some older Spark code to leverage built-in functions introduced in Spark 3.5.0. The existing code performs array manipulations manually. Which of the following code snippets utilizes new built-in functions in Spark 3.5.0 for array operations?

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question 19

A)

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question 19

B)

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question 19

C)

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question 19

D)

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Question 19


A.

result_df = prices_df \

.withColumn("valid_price", F.when(F.col("spot_price") > F.lit(min_price), 1).otherwise(0))


B.

result_df = prices_df \

.agg(F.count_if(F.col("spot_price") >= F.lit(min_price)))


C.

result_df = prices_df \

.agg(F.min("spot_price"), F.max("spot_price"))


D.

result_df = prices_df \

.agg(F.count("spot_price").alias("spot_price")) \

.filter(F.col("spot_price") > F.lit("min_price"))


Get Premium Databricks-Certified-Associate-Developer-for-Apache-Spark-3.5 Questions

Contribute your Thoughts:


Chosen Answer:
This is a voting comment (?). It is better to Upvote an existing comment if you don't have anything to add.