A type 1 error in statistical hypothesis testing is when the null hypothesis is true, but is rejected. This means that the test falsely concludes that there is a significant difference or effect when there is none. The probability of making a type 1 error is denoted by alpha, which is also known as the significance level of the test. A type 1 error can be reduced by choosing a smaller alpha value, but this may increase the chance of making a type 2 error, which is when the null hypothesis is false but fails to be rejected. References: [Type I and type II errors - Wikipedia], [Type I Error and Type II Error - Statistics How To]
Contribute your Thoughts:
Chosen Answer:
This is a voting comment (?). You can switch to a simple comment. It is better to Upvote an existing comment if you don't have anything to add.
Submit