Which of the following code blocks stores a part of the data in DataFrame itemsDf on executors?
The code block shown below should return the number of columns in the CSV file stored at location filePath. From the CSV file, only lines should be read that do not start with a # character. Choose
the answer that correctly fills the blanks in the code block to accomplish this.
Code block:
__1__(__2__.__3__.csv(filePath, __4__).__5__)
Which of the following code blocks returns a DataFrame where columns predError and productId are removed from DataFrame transactionsDf?
Sample of DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+
2.|transactionId|predError|value|storeId|productId|f |
3.+-------------+---------+-----+-------+---------+----+
4.|1 |3 |4 |25 |1 |null|
5.|2 |6 |7 |2 |2 |null|
6.|3 |3 |null |25 |3 |null|
7.+-------------+---------+-----+-------+---------+----+
The code block shown below should return a one-column DataFrame where the column storeId is converted to string type. Choose the answer that correctly fills the blanks in the code block to
accomplish this.
transactionsDf.__1__(__2__.__3__(__4__))
Which of the following code blocks stores DataFrame itemsDf in executor memory and, if insufficient memory is available, serializes it and saves it to disk?
The code block displayed below contains an error. The code block should arrange the rows of DataFrame transactionsDf using information from two columns in an ordered fashion, arranging first by
column value, showing smaller numbers at the top and greater numbers at the bottom, and then by column predError, for which all values should be arranged in the inverse way of the order of items
in column value. Find the error.
Code block:
transactionsDf.orderBy('value', asc_nulls_first(col('predError')))
Which of the following code blocks creates a new one-column, two-row DataFrame dfDates with column date of type timestamp?
Which of the following describes characteristics of the Dataset API?
In which order should the code blocks shown below be run in order to create a DataFrame that shows the mean of column predError of DataFrame transactionsDf per column storeId and productId,
where productId should be either 2 or 3 and the returned DataFrame should be sorted in ascending order by column storeId, leaving out any nulls in that column?
DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+
2.|transactionId|predError|value|storeId|productId| f|
3.+-------------+---------+-----+-------+---------+----+
4.| 1| 3| 4| 25| 1|null|
5.| 2| 6| 7| 2| 2|null|
6.| 3| 3| null| 25| 3|null|
7.| 4| null| null| 3| 2|null|
8.| 5| null| null| null| 2|null|
9.| 6| 3| 2| 25| 2|null|
10.+-------------+---------+-----+-------+---------+----+
1. .mean("predError")
2. .groupBy("storeId")
3. .orderBy("storeId")
4. transactionsDf.filter(transactionsDf.storeId.isNotNull())
5. .pivot("productId", [2, 3])
Which of the following describes the conversion of a computational query into an execution plan in Spark?