NVIDIA TensorRT provides optimizations to enhance the performance of deep learning models during inference, as detailed in NVIDIA’s Generative AI and LLMs course. Two key optimizations are multi-stream execution and layer fusion. Multi-stream execution allows parallel processing of multiple input streams on the GPU, improving throughput for concurrent inference tasks. Layer fusion combines multiple layers of a neural network (e.g., convolution and activation) into a single operation, reducing memory access and computation time. Option A, data augmentation, is incorrect, as it is a preprocessing technique, not a TensorRT optimization. Option B, variable learning rate, is a training technique, not relevant to inference. Option E, residual connections, is a model architecture feature, not a TensorRT optimization. The course states: “TensorRT optimizes inference through techniques like layer fusion, which combines operations to reduce overhead, and multi-stream execution, which enables parallel processing for higher throughput.”
[References: NVIDIA Building Transformer-Based Natural Language Processing Applications course; NVIDIA Introduction to Transformer-Based Natural Language Processing., , ]
Submit