What is the best method to proactively train an LLM so that there is mathematical proof that no specific piece of training data has more than a negligible effect on the model or its output?
Differential privacy is a technique used to ensure that the inclusion or exclusion of a single data point does not significantly affect the outcome of any analysis, providing a way to mathematically prove that no specific piece of training data has more than a negligible effect on the model or its output. This is achieved by introducing randomness into the data or the algorithms processing the data. In the context of training large language models (LLMs), differential privacy helps in protecting individual data points while still enabling the model to learn effectively. By adding noise to the training process, differential privacy provides strong guarantees about the privacy of the training data.
[Reference: AIGP BODY OF KNOWLEDGE, pages related to data privacy and security in model training., , ]
Contribute your Thoughts:
Chosen Answer:
This is a voting comment (?). You can switch to a simple comment. It is better to Upvote an existing comment if you don't have anything to add.
Submit