In standard Recurrent Neural Networks (RNNs), the Tanh activation function is commonly used in the hidden layers. The Tanh function squashes input values to a range between -1 and 1, allowing the network to learn complex patterns over time by transforming the input data into non-linear patterns.
While other activation functions like Sigmoid can be used, Tanh is preferred in many RNNs for its wider range. ReLU is generally used in feed-forward networks, and Softmax is often applied in the output layer for classification problems.
HCIA AI References:
Deep Learning Overview: Describes the architecture of RNNs, highlighting the use of Tanh as the standard activation function.
AI Development Framework: Discusses the various activation functions used across different neural network architectures.
Contribute your Thoughts:
Chosen Answer:
This is a voting comment (?). You can switch to a simple comment. It is better to Upvote an existing comment if you don't have anything to add.
Submit