This is done by running the model through a training loop, where the model is fed data and the parameter weights are adjusted based on the results of the model's performance on the data. For example, if the model is a neural network, the weights of the connections between the neurons are adjusted based on the results of the model's performance on the data. This process is repeated until the model performs better on the data, at which point the model is considered trained.
Contribute your Thoughts:
Chosen Answer:
This is a voting comment (?). You can switch to a simple comment. It is better to Upvote an existing comment if you don't have anything to add.
Submit