For a company valued using the free cash flow to equity with constant growth, the standard Gordon growth formula is:
Value of equity=FCF1ke−g\text{Value of equity} = \frac{\text{FCF}_1}{k_e - g}Value of equity=ke−gFCF1
Where:
FCF₁ = free cash flow in one year’s time
kek_eke = cost of equity
ggg = constant growth rate
Here:
FCF₁ = $100,000
ke=10%=0.10k_e = 10\% = 0.10ke=10%=0.10
g=5%=0.05g = 5\% = 0.05g=5%=0.05
Correct valuation:
Value=100,0000.10−0.05=100,0000.05=$2,000,000\text{Value} = \frac{100{,}000}{0.10 - 0.05} = \frac{100{,}000}{0.05} = \$2{,}000{,}000Value=0.10−0.05100,000=0.05100,000=$2,000,000
The analyst instead did:
100,000×(1+0.05)/0.10=105,000/0.10=$1,050,000100{,}000 \times (1 + 0.05) / 0.10 = 105{,}000 / 0.10 = \$1{,}050{,}000100,000×(1+0.05)/0.10=105,000/0.10=$1,050,000
So the true value is $2,000,000 and the analyst’s value is $1,050,000.
Undervaluation=2,000,000−1,050,000=$950,000\text{Undervaluation} = 2{,}000{,}000 - 1{,}050{,}000 = \$950{,}000Undervaluation=2,000,000−1,050,000=$950,000
So the company has been undervalued by $950,000 → Option A.
Submit